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(ABSTRACT)

A new upwind scheme is developed for solving the three-dimensional Euler
equations on unstructured tetrahedral meshes. The method yields solution accuracy
and efficiency comparable to that currently available from similar structured-grid
codes. The key to achieving this result is a novel cell reconstruction process which
is based on an analytical formulation for computing solution gradients within tetra-
hedral cells. Prior methodology requires the application of cumbersome numerical
procedures to evaluate surface integrals around the cell volume. The result is that
higher-order differences can now be constructed more efficiently to attain computa-
tional times per cell comparable to those of structured codes.

The underlying philosophy employed in constructing the basic flow solver is
to draw on proven structured-grid technology whenever possible in order to reduce
risk. Thus, spatial discretization is accomplished by a cell-centered finite-volume
formulation using flux-difference splitting. Solutions are advanced in time by a 3-
stage Runge-Kutta time-stepping scheme with convergence accelerated to steady
state by local time stepping and implicit residual smoothing. The flow solver oper-
ates at a speed of 34 microseconds per cell per cycle on a CRAY-2S supercomputer
and requires 64 words of memory per cell.

Transonic solutions are presented for a broad class of configurations to demon-

strate the accuracy, speed, and robustness of the new scheme. Solutions are shown



for the ONERA M6 wing, the Boeing 747-200 configuration, a low-wing trans-
port configuration, a high-speed civil transport configuration, and the space shuttle
ascent configuration. Computed surface pressure-coefficient distributions on the
ONERA M6 wing are compared with structured-grid results as well as experimen-
tal data to quantify the accuracy. A further assessment of grid sensitivity and the
effect of convergence acceleration parameters is also included for this configuration.
The more complex configurations serve to demonstrate the robustness and efficiency
of the new method and its potential for performing routine aerodynamic analysis
of full aircraft configurations. For example, the basic transonic flow features are
well captured on the space shuttle ascent configuration with only 7 megawords of

memory and 142 minutes of CRAY-YMP run time.
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1. INTRODUCTION

The role of Computational Fluid Dynamics (CFD) in maintaining the com-
petitiveness of the U.S. aircraft industry in the international marketplace was a
recurring theme at the 1991 NASA CFD Conference [1]. Panel discussions held be-
tween industry, university, and government researchers and managers drew a clear
consensus that advanced CFD codes were now considered principle technology in
the analysis and design of air vehicles. From the discussions came a further con-
sensus that more advanced CFD tools were needed by industry which would enable
the working-level engineer to provide final answers to a problem within days. The
industry personnel expressed a desire that more effort be directed by government
and university research organizations toward bridging the gap between research on
basic algorithms and the development of application software.

The primary need reiterated during the discussions was for user-friendly soft-
ware capable of providing timely analysis and design of complex aircraft configu-
rations across the speed range from subsonic to supersonic. Computational tools
have been maturing rapidly toward this goal over the past decade. The earliest
computations on geometrically complex aircraft geometries were performed with
either one of two approaches. The first, and simplest, utilized an extended small
disturbance-type equation coupled with mean-surface boundary conditions [2-4].
The second, and more sophisticated approach employed the full potential equation
coupled with surface-conforming boundary conditions [5-7]. Due to the simplicity
of the boundary conditions, the small disturbance method could be more readily
applied to aircraft configurations with nacelles, pylons, winglets, and canards [8].
However, the assumptions of isentropic and irrotational flow employed in both meth-
ods were not strictly correct when shock waves are present, and thus, limited their
accuracy.

As more powerful supercomputers became available, interest increased in de-

veloping efficient and accurate algorithms for solving the Euler and Navier-Stokes
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equations. The Euler equations provide a more refined model of the inviscid flow by
allowing entropy rises through shock waves while conserving mass, momentum, and
energy, and by admitting vorticity. The Navier-Stokes equations include the addi-
tional terms for the viscous shear stresses. Early applications of the Euler equations
to complex geometries were made using single-block grids [9, 10]. These efforts were
continued and extended to viscous flow over complex geometries [11].

As Euler and Navier-Stokes algorithms matured, efforts were also underway
to extract more geometrical flexibility from the computational grid. Domain de-
composition became a preferred approach for solving the flexibility problem. This
approach involves dividing the spatial domain around a complex geometry into
zones of simpler grid blocks, then solving the flow equations independently within
each block while maintaining communication across the block boundaries. The key
obstacle to overcome was to provide an efficient and accurate transfer of informa-
tion across zonal boundaries. Efficient schemes have been developed for patching
dissimilar interfaces along a common boundary in a conservative manner [12 to 16],
and for overlapping the boundaries of independent component grids [17,18]. Grid
embedding techniques were also under investigation as a means of increasing local
resolution of flow features. [19 to 21]. Domain decomposition methodologies have
been successfully applied for the computation of the viscous flow around complex
configurations such as the F-16 [22], STS ascent configuration [23], and the F/A-
18 [24], F/A-18 forebody [25,26], and a high-speed accelerator configuration [27].
However, even with the recent dramatic progress in applying the various domain
decomposition techniques to complex configurations, the grid setup time is still
measured in months. Thus, more advances are necessary before such large-scale
computations are performed routinely.

New opportunities for the analysis and design of complex configurations are
emerging through the relatively new technology of unstructured grids [28-44]. Tetra-

hedral cells offer exceptional geometric flexibility in constructing quality grids around
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complex configurations without resorting to the large scale decomposition tech-
niques. Furthermore, the time required to generate an unstructured tetrahedral
grid is significantly less than that for a structured zonal grid. Unstructured flow
solvers utilize a random data structure which better facilitates the adaptation of
the grid to the physics of the flow, or the movement of components within the grid,
since grid points can be placed where ever needed.

While unstructured methodology is rooted in the Finite Element Method (FEM)
from the discipline of Structural Analysis [45], a variety of algorithms have been de-
veloped for solving the compressible flow equations. Adaptations of the FEM have
been successfully applied to the flow equations by some researchers [30 to 37]. Oth-
ers have employed more conventional central-differenced finite-volume techniques
with success [28,29]. More recently, upwind-differenced finite-volume methods have
been investigated for unstructured grids [38 to 44]. While many of these meth-
ods have shown varying degrees of success, most fall well short of their structured
counterparts in terms of efficiency and accuracy. Thus, significant advancements
are needed before this methodology will be used widely for solving practical three-
dimensional problems.

There is a need for more fundamental research in both unstructured solution
algorithms and grid generation methodology. Current solution algorithms are much
less efficient than structured ones due to the indirect addressing required by ran-
dom data sets. Furthermore, many of the unstructured algorithms have not demon-
strated sufficient accuracy for addressing realistic problems, in particular for viscous
flow. The efficient implementation of viscous terms and turbulence models on ar-
bitrary tetrahedral cells has yet to be resolved satisfactorily, although efforts are
underway to address this problem [34,36]. The generation of tetrahedral grids is
a research topic in itself. The most common approaches are the Advancing Front
technique [46] and Delaunay Triangulation [47,48]. Methods for generating highly-
stretched viscous grids on complex three-dimensional geometries are in the very

early stages of development [49,50], but are pivotal to the overall advancement of
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unstructured grid methodology. Solution adaptive gridding techniques are presently
under investigation. While some have been applied in three-dimensions [30, 33, 35,
and 37], additional work is needed before realizing the full benefits on complex
configurations.

More applied research is needed in order to focus the development of unstruc-
tured methodology toward a useable tool in a timely fashion. Application of the
basic methodology to solving relevant problems tends to expose deficiencies at an
early stage and accelerate the implementation of other useful features such as design
algorithms or real-gas models. Documented code calibration studies are essential
for evaluating solution accuracy and establishing confidence within the user com-
munity. These studies should be conducted carefully for a broad class of geometries
for which experimental data is available.

The long-term goal for developing unstructured grid methodology is to produce
a useful engineering tool which ultimately can provide rapid analysis of full aircraft
configurations at flight Reynolds numbers. This goal is sufficiently broad to require
the concerted effort of many researchers in bringing it to fruition. The objective
of the present work is to construct an accurate and efficient unstructured three-
dimensional inviscid flow solver. The coding is constructed as a modular platform
on which to build new capabilities. The underlying development philosophy is to
draw on proven structured-grid technology whenever possible in order to reduce
risk. The resulting scheme is a cell-centered finite volume formulation which is ap-
plied to tetrahedral cells using flux-difference splitting and explicit time integration
with convergence acceleration. An accurate and efficient higher-order differencing
scheme for tetrahedral cells was not available in the literature and could not be
readily extended from structured methodology, thus, requiring the development of
substantially new technology. This development constitutes one of the major con-
tributions of the present work, and has been summarized in Refs. [43, 44]. In order
to minimize resource requirements, particular attention is given to both memory
management and vectorization. All grids are generated using an extended version
of the advancing front grid generator, VGRID3D [51]. Graphic postprocessing of
solutions was performed using VPLOT3D described in Ref. [51].
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2. GOVERNING EQUATIONS

2.1 Introduction

The fluid motion is to be governed by the time dependent Euler equations for
an ideal gas which are a coupled set of equations that express the conservation
of mass, momentum, and energy. The general assumptions employed are that the
fluid is compressible, inviscid, nonconducting, adiabatic, and is not influenced by
body forces. Since the equations of fluid motion are based upon conservation laws,
it is convenient to express them in a form which clearly displays the conserved
quantities. The governing equations will be expressed in conservative form using

both the integral and differential formulations.

2.2 Mathematical Description

2.2.1 Integral Form

The integral form of the governing equations can be derived from first principles
using a control-volume approach that is based on the satisfaction of macroscopic
physical laws. This approach is particularly useful when dealing with inviscid con-
tinuum flow in which discontinuities exist, e.g. shock waves or contact discontinu-
ities. The integral form of the flow equations are equivalent to the differential ones
in regions of smooth flow and are also valid across discontinuities where they reduce
to the Rankine-Hugoniot jump relations [52]. The integral form is especially useful
when dealing with finite-volume discretization techniques, as will be discussed in a
subsequent section.

The governing equations presented below express a relationship where the time
rate of change of the state vector Q within the domain  is balanced by the net

flux F across the boundary surface 92

/ / /Q%der/ /aQF(Q) RdA=0 2.1)
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where the conserved variables are

P density
pU z — momentum per unit volume
Q=4 pv p ={ y — momentum per unit volume
pw z — momentum per unit volume
peo total energy per unit volume
and the flux vector is
P 0
pu Ny
F(Q)-a=(V-8){ pv | +p{
pw Nz
pho 0

The terms in Eq. (2.1) are nondimensionalized as follows: noting that the super-
script * denotes a dimensional quantity and the subscript co represents freestream
conditions, then p = p*/p’, u = u*/al,, v = v*/ak, w = w*/a},, and
eo = ef/(a%)?. The parameters fiz, 7y, and 7, are the Cartesian components
of the ezterior surface unit normal fi on the boundary 0Q. The Cartesian velocity
components are u,v, and w in the z,y, and z directions, respectively. It is necessary
to define an equation of state in order to close the system of equations. Using the

ideal gas assumption, the pressure can be expressed as
1
p=ply = Dlee = 5@+ 07 +w?)] (2.2)

where v is the ratio of specific heats and is prescribed as 1.4 for air. The total

enthalpy is defined as

¥y p,1 , 2 2
ho = ——= 4 —(u® + v* + w*). 2.3
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2.2.2 Differential Form

It is often convenient to use the differential form of the governing equations
for discussion purposes. This form of the equations relies on aspects of continuum
mathematics in the derivation and is restricted by the assumptions that the domain
must have continuous partial derivatives and be bounded by a simple, piecewise
smooth surface. The differential form of the equations can be derived by applying
Gauss’s theorem to the flux integral in Eq. (2.1). It is in the application of Gauss’s
theorem that the restrictive continuum properties are introduced.

The resulting flow equations in a conservative, Cartesian, differential form are:

0Q of 0g Oh

— 4+ —+—=+7—=0 2.4
o oz oy ' o 24)
with
p
pu
Q=4 pv
pw
peo
and
pu pU pw
pu? +p puv puw
f={ puww j,g={p’+p ,h={ pow
puw pVw pw2 +p
puh, pvho pwho

As before, these equations are closed using the ideal gas assumption described in
Eq. (2.2). While Eqgs. (2.4) are shown in mathematical conservation form, the con-
tinuum assumption employed in their derivation precludes the conservative property

across discontinuities within the domain.
2.3 Finite-Volume Discretization

The finite-volume technique is a discretized application of the control-volume
approach that was used in the derivation of the integral form of the governing equa-
tions. The global domain is divided into a finite number of subdomains, each one

of arbitrary volume ; and closed by a boundary 9%;, where Eq. (2.1) is applied
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to each subdomain. Since each subdomain §2; shares common boundaries with
its neighbors, this approach retains the conservative property inherent to the inte-
gral equations. This feature occurs because the flux which exits across an interior
boundary of one subdomain will enter the neighboring subdomain across the com-
mon boundary. The end result is that the contributions from the fluxes across all
of the interior boundaries within the global domain will exactly cancel each other,
leaving only those flux contributions across the ezternal boundary.

Numerical approximations to the the volume and surface integrals of Eq. (2.1)
lead to the unknown states being interpreted as volume-averaged values in each

subdomain. The volume-averaged values for the conserved variables Q are

@) =7/ [ _aav. | (2.5)

By making the assumption of a fixed subdomain so that the time derivative may
be brought outside the integral in Eq. (2.1), and then substituting Eq. (2.5), a

semi-discrete approximation to the equations can be written

&(%)

0Q;
V,W + ;Fi’jAAi,j = 0. (2.6)
where
Qi =(Qi)

Equation (2.6) states that the time rate of change of the volume-averaged state Q
in the i** control volume is balanced by the summation of the area-averaged flux
F; ; through the discrete boundary faces k. Equation (2.6) can also be interpreted
as a discrete form of the differential equation if Q; is assumed to be the state at
the nodal point 3.

The subdomains ; can be represented by any arbitrarily shaped volume, i.e.
hexahedrals, tetrahedrals, polygons, etc. For structured methods, that volume is

usually prescribed as a hexahedral cell where the Cartesian coordinates can be
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transformed into a generalized three-component curvilinear frame of reference. The
summation in Eq. (2.6) is then applied over the six faces of the cell. Many efficient
algorithms which are based on a logical indexing of data structure are available [53-
65] for solving the resulting system of algebraic equations. The system of equations
can also be solved using generalized indexing schemes which are often referred to
in literature as unstructured techniques [66].

The present method employs a generalized indexing scheme with a cell-centered
control volume. The global domain is divided into tetrahedral cells where each cell
is viewed as a control volume ; that is enclosed by the four triangular surfaces

09, as shown in sketch (a)

B Grid point locations
® Q evaluated at cell centroid
X Fluxes evaluated at face centroids

Sketch (a)

Equation (2.6) is applied over the four faces of each cell. The equations for the
metric terms of tetrahedral cells are presented in Appendix Al.

The cell-centered approach contrasts with the more commonly used node-
centered approach [28, 30, 31, 33, 36, 37, 40] that utilizes polygonal control volumes

which are constructed around the vertices of the tetrahedra. The prirhary reason
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for choosing the cell-centered approach is due to the increased spatial resolution
afforded by the scheme on a set grid. The higher spatial resolution stems from the
feature that tetrahedral grids contain between five and six times more cells than
nodes. Similarly, the surface resolution is doubled since there are twice as many
boundary faces as boundary nodes. Secondary reasons for choosing the cell-centered
approach are that it is more straightforward to program and to treat the boundary

conditions accurately.
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3. UPWIND DISCRETIZATION

3.1 Introduction

The finite volume approach has the basic feature that the time integration
and spatial discretization procedures are fully decoupled. Thus, the spatial dis-
cretization is accomplished independent of the time integration. The problem to be
addressed in this section pertains to the estimation of fluxes across the faces of the
tetrahedral control volumes. Once these fluxes have been determined as a function
of the state variable Q, the solution can be advanced in time by any number of time
integration algorithms.

The interface fluxes are generally constructed in one of two manners: central
differencing or upwind differencing. For central differencing, the numerical flux
F(QL,QRr) is computed by averaging the fluxes corresponding to Qr and Qg.
This approach leads to a decoupling of adjacent cells and is inherently unstable. To
achieve stability, artificial dissipation must be added. On structured grids it has
been found that an effective and inexpensive dissipation formula can be constructed
as a blend of second and fourth differences in the flow variables [67]. This has been
extended to unstructured tetrahedral grids by constructing the dissipative operator
as a blend of a Laplacian and a biharmonic operator [68], corresponding to the
second and fourth differences respectively, and using the finite volume or integral
approximation to evaluate these operators.

Upwind schemes determine the interface fluxes based on the characteristic the-
ory for hyperbolic systems of equations. Operators are constructed so that the
differencing is performed upwind or in the direction opposite to that in which the
components of information are traveling. This approach has the advantage of be-
ing more robust and requiring less user interaction than does the central difference
technique. There are generally two classes of upwind methods: flux-vector splitting
(FVS) and flux-difference splitting (FDS). The more popular FVS schemes are those
of Steger and Warming [69] and Van Leer [70]. The most popular FDS technique

is Roe’s scheme [71].
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The basic idea behind FVS techniques is to split the inviscid flux vector in
one space dimension into two parts, according to the sign of the eigenvalues, each
of which contain the information that propagates downstream and upstream, re-
spectively. The two parts are then differenced separately in a stable manner using
a one-sided extrapolation formula consistent with the direction of propagation. In
general, downstream propagating information is extrapolated from the upstream
direction, and conversely for the upstream propagating information.

The FDS technique does not split the flux vector but reconstructs the fluxes
by determining an approximate solution to a Reimann problem [71]. For that,
discontinuous states are assumed to exist on either side of a cell interface. An
approximate solution for this condition is written in terms of waves propagating
upstream and downstream relative to the cell interface, each of which is associated
with a distinct eigenvalue. For the Euler equations, the solution consists of three
waves centered at the cell interface, i.e. a shock wave, a contact discontinuity, and
an expansion wave. In general, FDS is considered more accurate and provides a
sharper resolution of shocks and contact discontinuities than does FVS. A good
review of the various flux formulas is presented in Ref. [72]. The FDS approach will

be employed in the present method.
3.2 Flux Difference Splitting

The philosophy behind Roe’s approach to FDS is to compute approximate solu-
tions to the underlying set of Riemann problems which still describe the important
nonlinear behavior of the interacting waves. This contrasts with Godunov’s ap-
proach [73] which is to obtain a more expensive exact nonlinear solution to what
is already an approximation of the data. Roe’s scheme exploits the fact that the
Riemann solution for any set of linear conservation laws is easily computed. Its
derivation is based only on a one-dimensional interaction of characteristic waves,
but can be applied in multidimensions if the assumption is made that conserved
quantities in grid cells are exchanged by waves traveling normal to the cell inter-

faces, i.e. locally one-dimensional. Hence, velocities parallel to the cell interface
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are ignored and differences in the parallel components are assumed to occur across
the contact surface. Research is also underway on a truly multidimensional FDS
approach [74 to 76], but this has not been applied in the present work. A good
derivation of Roe’s one-dimensional scheme is presented in Ref. [53] along with the
extension to three dimensions. Key elements of the derivation will be presented in
the following.

The flux across each cell face « is computed using the numerical flux formula

Fy = 14[F(Qz) + F(Qr)- | A| (Qr — QL) (3-1)

Here Q1 and Qg are the conserved variables to the left and right of the interface
k. Eq. (8.1) essentially expresses the central difference of the fluxes plus an upwind
correction. For a central-difference algorithm, the upwind correction term would be
replaced by the artificial dissipation terms.

Since the Euler equations are nonlinear, and Roe’s scheme is based on lin-

ear concepts, the equations are linearized by evaluating the Jacobian matrix A =

O0F/0Q with the averaged quantities:

P =+/PLPR

i = (ur +urvpr/p)/(1 + v/pr/p1)
% = (vz +vrV/pr/pL)/(L + V/PR/PL)
@ = (wz +wrv/pr/p1)/(1 + V/pr/pL) (3.2)
ho = (hoy + honV/pr/p1)/(1 + V/PR/PL)
@ = (v = 1)(ho — (& + #* + ©7)/2)

Here, the Roe-averaged matrix A (note tilde) is a mean value of A with the prop-

erties
(i) A(Qr,Qr) ~ A(Q)as QL - Qr — Q;
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(i) A(QL,Qr)[Qr — Q1] = F(Qr) — F(QL) ;

(iii) A has a complete set of real eigenvalues and eigenvectors.

Property (i) ensures consistency of the governing differential equation so that the
approximate solution tends to the exact solution for small differences in data across
the interface. Property (ii) ensures that A satisfies the Rankine-Hugoniot shock
jump condition and is responsible for the sharp resolution of steady shock waves.
Property (iii) ensures that the matrix A has three independent eigenvalues which

allows the matrix to be written in the canonical form:
|A|l=T|A| T (3.3)

where T and T-! are the right and left eigenvectors, respectively, and A is the
diagonal matrix of eigenvalues.

The Roe-averaged variables in Eq. (3.2) were derived in Ref. [77] to satisfy
the three properties simultaneously. Properties (i) and (iii) could be satisfied by
virtually any simple algebraic average of the left and right states, but property
(ii) can not. The special square-root averaging evident in Eq. (3.2) is necessary to
satisfy the second property, i.e. the Rankine-Hugoniot shock jump condition..

Using Eq. (3.3) to rewrite the last term in Eq. (3.1) as:
|AI(Qr-Qu)=T|A|T7AQ (34)

it can be reduced to three AF flux components, each of which is associated with a

distinct eigenvalue:

TIA|T'AQ =| AF, | + | AFy | + | AFs | (3.5)
with
1 0
i i i Au — n AU
| AF, |=| T | (Ap - é@) 5 +5 Av — 7y AU
. Aw— 74, AU
1‘-—-’*—‘-’-’-2—?1'-2’- Ay + 1Av + 0Aw — UAU
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" i+ Az
. = ., (Ap£paAUy | ¥ T Nad
| AFys |=|U £d | (p2+) D+ Ry d
“ B + 7,8

ho £ Ua

where U = @i, + Ny + wn, and AU = nzAu + nyAv + nAw.
For a first-order scheme, the state of the primitive variables at each cell face is

set to the cell-centered averages on either side of the face.

3.3 Higher-Order Spatial Differencing

9.9.1 Multidimensional Reconstruction

The challenge posed in constructing an effective higher-order scheme is to de-
termine an accurate estimate of the left and right states at the cell faces for the flux
calculation. One approach [40, 41] would be to extend the MUSCL-differencing
technique, which is widely used in structured algorithms, to unstructured grids.
Since this procedure involves colinear interpolations across arbitrary tetrahedral
cells, accurate results can be difficult to attain. An alternate approach proposed
by Barth and Jespersen [38] is to perform a multidimensional linear reconstruc-
tion of cell-averaged data. In the reconstruction approach, higher-order accuracy
is achieved by expanding the cell-centered solution to each cell face with <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>